
A Balanced Consistency Maintenance Protocol for
Structured P2P Systems

Yi Hu, Min Feng, Laxmi N. Bhuyan
Department of Computer Science and Engineering
University of California at Riverside, CA, U.S.A

yihu, mfeng, bhuyan@cs.ucr.edu

Abstract—A fundamental challenge of managing mutable data
replication in a Peer-to-Peer (P2P) system is how to efficiently
maintain consistency under various sharing patterns with hetero-
geneous resource capabilities. This paper presents a framework
for balanced consistency maintenance (BCoM) in structuredP2P
systems. Replica nodes of each object are organized into a tree
for disseminating updates, and a sliding window update protocol
is developed to bound the consistency. The effect of window size
in response to dynamic network conditions, workload updates
and resource limits is analyzed through a queueing model. This
enables us to balance availability, performance and consistency
strictness for various application requirements. On top of the
dissemination tree, two enhancements are proposed: a fast
recovery scheme to strengthen the robustness against node and
link failures; and a node migration policy to remove and prevent
the bottleneck for better system performance. Simulationsare
conducted using P2PSim to evaluate BCoM in comparison to
SCOPE [24]. The experimental results demonstrate that BCoM
significantly improves the availability of SCOPE by lowering the
discard rate from almost 100% to 5% with slight increase in
latency.

I. I NTRODUCTION

Structured P2P systems have been effectively designed for
wide area data applications [21] [10] [16] [18] [22] [20]. While
most of them are designed for read-only or low-write sharing
contents, a lot of promising P2P applications demand for sup-
porting mutable contents, such as modifiable storage systems
(e.g. OceanStore [16], Publius [19]), mutable content sharing
(e.g. P2P WiKi [13]), even interactive ones (e.g. P2P online
games [2] [5] and P2P collaborative workspace [12]). P2P
organization improves availability, fault tolerance, andscala-
bility for static content sharing. But mutable content sharing
raises issues of replication and consistency management. P2P
dynamic network characteristics combined with the diverse
application consistency requirements and heterogeneous peer
resource constraints also impose unique challenges for P2P
consistency management. This requires a consistency solution
to work efficiently in such dynamic conditions.

P2P systems are typically large scale, where peers with var-
ious resource capabilities experience diverse network latency.
Also, their dynamic joining and leaving make the P2P overlay
failure prone. Neither sequential consistency [15] nor eventual
consistency [8] individually works well in P2P environment. It
has been proved [14] that among the three properties, atomic
consistency, availability and partition-tolerance, onlytwo can
be satisfied at a time. Applying sequential consistency leads

to prohibitively long synchronization delay due to the large
number of peers and unreliable overlay. Even “deadlock”
may occur when a crashed replica node makes other replica
nodes wait forever. Hence, the system scalability is restricted
due to the lowered availability from long synchronization
delay for a large number of nodes. At the other extreme,
eventual consistency allows replica nodes concurrently update
their local copies and only requires that all replica copies
become identical after a long enough failure-free and update-
free interval. Since in P2P systems replica nodes are highly
unreliable, the update-issuing node may have gone offline by
the time update conflicts are detected, leading to unresolvable
conflicts. It is infeasible to rely on a long duration withoutany
failure or further updates, due to which eventual consistency
fails to provide any end-to-end performance guarantee to P2P
users. As surveyed in [23], wide area data sharing applications
vary widely in their frequency of reads and updates among
replicas, in their tolerance of stale data and handling of update
conflicts.

This paper presents a Balanced Consistency Maintenance
(BoM) protocol for in structured P2P systems for balancing
the consistency strictness, availability and performance. Due
consideration is given to dynamic workload, frequent replica
node churns, heterogeneous resource capabilities, and different
application consistency requirements. BCoM protocol serial-
izes all updates to eliminate the complicated conflict handling
in P2P systems, while allowing certain obsoleteness in each
replica node to improve the availability and performance. A
sliding window update protocol is used to specify the number
of allowable updates buffered by each replica nodes. This
provides bounded consistency, the performance of which falls
between the sequential and the eventual consistency.

Two main categories of bounded consistency are proposed
for P2P systems: probabilistic consistency [4] [30] and time-
bounded consistency [25] [26], both of which have main
limitations, but are relaxed with BCoM. (1) In the probabilistic
consistency the probability is guaranteed with regard to all
replica nodes but not for an individual node. BCoM ensures
node level as well as system-wide consistency bound. (2)
Time-bounded consistency sets the validation timer so thatthe
estimated number of updates within the timer valid durationis
small. To avoid the inaccuracy in this translation, BCoM uses
the sliding window to directly bound the number of updates
allowed to be buffered at each node. (3) BCoM eliminates both

redundant propagations in probabilistic bounded consistency
and the individual computations of the timer in time-bounded
consistency. Since redundancy is not needed for consistency
probability and the window size does not depend on the
latency at individual nodes, it is convenient to assign one node
to set and adjust the window size.

An update window protocol has been designed for web-
server systems [31] to bound the uncommitted updates in
each replica node. But update conflicts and potential cascad-
ing impacts can hardly been addressed when optimizing the
window size. Moreover, there are two challenges for applying
this technique to P2P systems: (1) unlike the web-servers,
P2P replica nodes are highly dynamic and unreliable; (2) the
number of replicas in P2P systems is orders of magnitude
larger than that in web-server systems. (1) and (2) together
make any optimization model impractical for P2P systems
because it requires information on each node’s update rate,
propagating latency, etc. BCoM analyzes the window size
through a queueing model based on dynamic network condi-
tion, update workload and available resources. It periodically
collects the general system information, such as the total layers
of replica node and the bottleneck latency, and guides the
window size setting with extremely low overhead. In this way,
the consistency maintenance and performance optimizationin
BCoM scale well with the P2P systems and adapt promptly
to the dynamic conditions.

In BCoM, replica nodes of each object are organized into a
d-ary dissemination tree (dDT) on top of the overlay structure.
The system-wide consistency bound is incrementally achieved
by each internal tree node through applying the sliding window
update protocol to its children. This makes the consistency
scalable with the total number of replica nodes. Since each
replica node takes charge of its children in update propagation
and consistency maintenance, the work of consistency mainte-
nance is evenly distributed. Even though the root is responsible
for serializing updates and accepting new joining node, we
show that it will not become a bottleneck.The overhead of
dDT is lightweight and evenly distributed to prevent “hot
spot” and “single node failure” problems as efficiently as the
previous identifier space partitioning methods in [24] [29].
Another primary goal of constructing adDT is to reduce the
latency experienced by each replica node to receive an update
from the root. ThusdDT inserts the new join or re-join nodes
to the smallest subtree and tries to balance the tree to shorten
the overlay distance.

BCoM presents two enhancements to further improve the
performance of adDT . One is theancestor cachescheme,
where each node maintains a cache of ancestors for fast
recovery from parent node failures. This also relieves tree-
structure’s “multiplication of loss” problem [11] (i.e. all the
subtree nodes rooted at the crashed node will lose the updates),
which is especially critical in P2P systems. Maintaining the
ancestor cache does not introduce extra overhead since the
needed information conveniently piggybacks on update prop-
agation. A small size of cache can also significantly improve
the robustness against node failures. The other is thenode

migration scheme, that is to migrate more capable nodes
to upper layers and less capable nodes to lower layers to
minimize the side effect of the bottleneck node and maximize
the overall performance. If an upper layer node is slow in
propagating updates, the consistency constraint blocks ances-
tors from receiving new updates, and all its subtree nodes
do not receive updates in a timely manner. Two forms of
node migration are presented, one is to remove the blocking
and the other is to prevent the blocking so that unnecessary
performance and availability degradations are removed.

The contributions of our paper are the following:

• Propose a consistency maintenance framework in struc-
tured P2P systems for balancing the consistency strict-
ness, availability and performance through a sliding win-
dow update protocol with two enhancement schemes.

• Analyze the problem of optimizing the window size in
response to dynamic network conditions, update work-
load, and resource constraints through a queueing model
to serve diverse consistency requirements from various
mutable data sharing applications.

• Evaluate the performance of BCoM with comparison to
SCOPE using the P2PSim simulation tool.

The rest of the paper is organized as follows: Sec.II intro-
duces the three core techniques in BCoM and the protocol
deployment. Sec.III presents the analytical model for window
size setting. The performance evaluation is given in Sec.IV
and the existing literature is reviewed in Sec.V. The paper is
concluded in Sec.VI.

II. D ESCRIPTION OFBCOM

BCoM aims to: (1) provide bounded consistency for main-
taining a large number of replicas of a mutable object; (2) bal-
ance the consistency strictness, availability and performance in
response to dynamic network conditions, update workload, and
resource constraints; (3) make the consistency maintenance
robust against frequently node churns and failures. To fulfill
these objectives, BCoM organizes all replica nodes of an
object into a d-ary dissemination tree (dDT) on top of the
P2P overlay for disseminating updates. It applies three core
techniques: sliding window update, ancestor cache, and tree
node migration on thedDT for consistency maintenance. In
this section, we first introduce thedDT structure, and then
explain the three techniques in detail.

A. Dissemination Tree Structure

For each object BCoM builds a tree with node degreed
rooted at the node whose ID is closest to the object ID in the
overlay identifier space. We denote this d-ary dissemination
tree of objecti as dDTi, which consists of only the peers
holding copies of objecti. We name such a peer as a “replica
node” of i, or simply as a replica node. An update can
be issued by any replica node, but it should be submitted
to the root. The root serializes the updates to eliminate the
complicated handling of update conflicts because the update-
issuing nodes may have gone offline.

The dynamic node behavior requires the construction of
dDT to serve two cases (1) single node joining and (2)
node with subtree rejoining. The goal of tree construction is
to minimize the tree height under both cases, which lowers
the update propagation latency and object discard rate for
consistency maintenance.

We show an example ofdDTi construction for case (1)
with node degreed set to2 in Fig.1. The replica nodes are
ordered by their joining time as node0, node1 and so on.
At the beginning when node1 and node2 joined, both were
assigned by node0 (i.e. the root) as a child. Then, node3
joined when node0’s degree was full, so it passed node3 to
its child who has the smallest number of subtree nodes denoted
as asSubno.. Since both children (i.e. node1 and node2) had
the sameSubno., it randomly selected one to break the tie,
say node1, and updated theSubno.(1) accordingly.Subno. of
a join node is one standing for itself. Node1 assigned node3
as its child, since it had a space for a new child. When node4
joined, node0 did not have space for a new child and passed
node4 to the child with smallestSubno., node2. Similarly,
node5 and node6 joined. The tree construction algorithm is
given in Alg.1. For case (2) when node6 crashed, all of its
children detected the crash independently and contacted other
ancestor to rejoin the tree, each acting as a delegate of its
subtree to save individual rejoining of subtree nodes.Subno.

counts for all its subtree nodes and itself. Sec.II-C explains
how to contact an ancestor for rejoining.

Fig. 1. Dissemination Tree Example

Algorithm 1 dDT Construction(p, q)

Input: nodep receives nodeq’s join request
Output: parent of nodeq in dDT
if p does not haved children then

Subno.(p) = +Subno.(q)
return p

else
find a childf of p s.t. f has the smallestSubno.

Subno.(f) = +Subno.(q)
return dDT Construction(f, q)

dDT directs a join node and a rejoin node with its subtree to
the child node with the smallest subtree nodes when the parent
node degree is full. The reason for not using the tree depth as

the traditional tree balanced algorithm is that rejoining with
subtree may increase the tree depth by more than1, which
is beyond the one by one tree height increase handled by
them. Another important reason is that maintaining the total
number of nodes in each subtree is simpler and more time
efficient than the depth of each subtree. Since the internal
nodes need to wait until the insertion completes, the updated
tree depth can be collected layer by layer from the leaves
back to the root. This makes the real time maintenance of the
tree depth quite difficult and unnecessary when tree nodes are
frequently joining and leaving. However, the internal nodes
can immediately update the total number of nodes in the
subtree after forwarding the joining node to a child. The tree
depth is periodically collected to help set the sliding window
size as discussed in Sec.II-B2, where its result does not need
to be updated in real time. But using an outdated tree depth
for dDT construction will lead to unbalanced tree and degrade
the performance.

B. Sliding Window Update Protocol

1) Basic Operation in Sliding Window Update:
Sliding window regulates the consistency bound for update

propagations to all replica nodes in adDT . “Sliding” refers
to the incremental adjustment of window size in response to
dynamic system condition. IfdDTi of object i is assigned a
sliding window sizeki, any replica node indDTi can buffer
up to ki unacknowledged updates before being blocked from
receiving new updates. At the beginning, root receives the first
update, sends to all children and waits for their ACKs. There
are two types of ACKs, RACK and NR ACK, both indicating
the successful receiving of the update. RACK indicates that
the sender is ready to receive the next update; NRACK means
the sender is not ready. While waiting, the root accepts and
buffers the incoming updates as long as itski size buffer does
not overflow. When receiving an RACK from a child, the
root sends the next update to this child if there is a buffered
update that has not been sent to this child. When receiving an
NR ACK from a child, it will not send the next update, but
the update is marked to be received by this child.

After receiving ACKs from all children, the update is re-
moved from its buffer. There are two cases of buffer overflow:
1) when the root’s buffer is full, the new updates are discarded
until there is a space; 2) when an internal node’s buffer is full,
the node sends NRACK to its parent for the last received
update. An RACK is sent to its parent when there is space in
the buffer. A leaf node does not maintain such update buffer.
After receiving an update, it immediately sends RACK to its
parent. Fig.2 shows an example of window size set to8, V
stands for the version number of the update, asV 10 − V 13
means the node keeps the updates from10th version to13th
version. Each internal node keeps the next version for its
slowest child until the latest version it received, and eachleaf
node only keeps the latest version it received.

2) Setting of Sliding Window Size:
The sliding window sizeki plays a critical role in balancing

the consistency strictness, the object availability and the update

Fig. 2. An example of sliding window update protocol

dissemination performance. The value ofki is an indicator of
consistency strictness. The largerki helps mask the long net-
work latency and temporary unavailability of the replica nodes,
lowers the update discards and improves the availability. The
disadvantages of a largerki are (1) discrepancy between the
replica local view and the most updated view at the root giving
rise to weaker consistency; and (2) longer queueing delay in
update propagation, thus lowering the update dissemination
performance. On the extremes, infinite buffer size provides
eventual consistency without discarding updates, and buffer
size zero provides sequential consistency with worst update
discards.

We explain here how the root updates the window size with
the analytical model in Sec.III giving the specific formula to
guide the update. The root measures input metrics everyT
seconds and adjusts theki value only when the metrics stable
and the oldki violates the constraint in Eq.7. In this way,
the unnecessary changes due to the temporary disturbances
are eliminated to keep thedDTi stable. In caseki needs to
be adjusted, it is incrementally increased or decreased oneby
one until the constraints are satisfied.

The computation ofki requires the information on the
update arrival rateλ, the tree heightL, and the bottleneck
service timeµL. The arrival rate is directly measured by
the root. The tree height and bottleneck service time are
collected periodically from leaf nodes to the root in a bottom-
up fashion. The two metrics are aggregated at every internal
node, so that the maintenance message always keeps the same
size. The aggregation is performed as follows: each leaf node
initializes the tree height to zero (L = 0) and the bottleneck
service timeµL to its update propagation time. Each node
sends the maintenance message to its parent. Once an internal
node receives the maintenance messages from all children, it
updatesL as the maximum value of its children’s tree height
plus 1 and µL as the maximum value among its and every
child’s service time. If its service time is longer than a child’s,
a non-blocking migration is executed to swap the parent with
the child. This aggregation continues until the root is reached.

C. Ancestor Cache Maintenance

Each replica node maintains a cache ofm ancestors starting
from its parent leading to the root in thedDT . The value ofm
is set based on the node churn rate (i.e. the number of nodes
leaving the system during a given period) so that the possibility

of all m nodes simultaneously failing is unlikely. When the
node does not havem ancestors, it caches information for all
the nodes beginning from the root.

A node contacts its cached ancestors sequentially layer by
layer upwards when its parent becomes unreachable. This can
be detected by ACK and maintenance message transmissions.
The sequential contact operation will find the closest ancestor,
no matter how many layers of node crashes exist. The root is
finally contacted for relocation if all the other ancestors crash.
We assume the root is reliable, since the overlay routing will
automatically handle the root failure by letting the node with
the nearest ID to replace the crashed root ofdDT .

The contacted ancestor runs the tree construction Alg.1 to
find a new position for this rejoining node with its subtree.
BCoM does not replace the crashed node by a leaf node to
maintain the original tree structure, since migration brings
the bottleneck node down to the leaf layer for performance
improvement. The new parent transfers the latest version of
the object to this new child position if necessary. Since each
node only keepski previous updates, content transmission
is used to avoid the communication overhead for getting the
missing updates from other nodes. The sliding window update
propagation resumes for incoming updates.

The ancestor cache provides fast recovery from node and
link failures with a small overhead and high success proba-
bility. Assuming the probability of a replica node failure as
p, the ancestor cache with sizem has a successful recovery
probability of 1 − pm. It is very unlikely that all of them
cached ancestors fail simultaneously; even if it occurs, the
root can be contacted for the relocation. An ancestor cache
is easily maintained by piggybacking an ancestor list to each
update. Whenever a node receives this update it adds itself to
the ancestor list before propagating the update to the children.
Each node refers to the newly received ancestor list to refresh
its cache. There is no extra communication for the piggyback,
and the storage overhead is also negligible for keeping the
information ofm ancestors.

D. Tree Node Migration

Any internal node with the subtree rooted at it will be
blocked from receiving new updates if one of its slowest
child is blocked due to the sliding window constraint. It is
quite possible that a lower layer node performs faster than the
bottleneck node, so we should promote the faster node to a
higher level and degrade the bottleneck node to a lower level.
For example in Fig.1, assume node1 is the bottleneck getting
the root 0 blocked. The faster node may be a descendant
of the bottleneck node (A) or a descendant of a sibling of
the bottleneck node (B). When blocking occurs, node0 can
swap the bottleneck node1 with a faster descendant with
more recent updates, like node4, to remove the blocking.
Before blocking occurs, node1 can be swapped with its fastest
child with the same update version to prevent the blocking.
The performance improvement through node migration is
confirmed by our queuing model ofdDT in Fig.3. There are
two forms of node migration, as described below.

• Blocking triggered migration: the blocked node searches
for a faster descendant, which has a more recent update
than the bottleneck node and swaps them to remove the
blocking.

• Non-blocking migration: when a node observes a child
performing faster than itself, it swaps with this child.
This migration prevents the potential blocking and speeds
up the update propagation for the subtree rooted at the
parent.

The swapping of (A) in Fig.1 is an example of blocking
triggered migration and (B) is an example of non-blocking
migration. Both forms of migration swap one layer at a time
and, hence, multiple times of migrations are needed for multi-
layer swapping. The non-blocking migration helps promote
the faster nodes to upper layers, which makes the searching in
blocking-triggered migration easier. Since the overlay DHT
routing in structured P2P networks relies on cooperative
nodes, we assume BCoM is run by these cooperative P2P
nodes transparent to the end users. Tree node migration uses
only the local information and improves the overall system
performance.

E. Basic Operations in BCoM

BCoM provides three basic operations:

• Subscribe: when a nodep wants to read the objecti
and keep it updated,p sends the subscription request to
the root ofdDTi by overlay routing. After receiving the
request, the root runs Alg.1 to locate a parent forp in
dDTi, who will transfer its most updated version top.
The subsequent updates are received under sliding win-
dow protocol. The message overhead for a subscription
is O(logd N), since locating a new node at most searches
along a path from the root to a leaf indDTi.

• Unsubscribe: when a nodep does not want objecti
anymore, it promotes its fastest child as the new parent
and transfers its parent and other children’s information
to the newly promoted node.p also notifies them of the
newly promoted node to update their related maintenance
information. The message overhead for a node leaving is
O(1), since the number of the affected node is no more
than d, and each has constant overhead to update the
related maintenance information.

• Update: after subscribing, if a nodep wants to update
the object, it sends the update request directly to the
root using IP routing. The root’s IP address is obtained
through the subscription or the ancestor cache. If the root
crashes,p submits the update to the new root through
overlay routing. Updates are serialized at the root by their
arrival time. The specific policy for resolving conflicts
is application dependent. The message overhead of an
update isO(1) for the direct submission to the root.

III. A NALYTICAL MODEL FORSLIDING WINDOW SETTING

The unstableness of P2P systems forbids us to use any
complicated optimization techniques that require severalhours
of computation at workstations (e.g. [28]) or every node

information in the entire system (e.g. [31]). BCoM adjusts the
sliding window size timely to dyanmic P2P systems relying
on limited information.

This section presents the analytical model of the sliding
window sizeki of object i, where the update propagation to
all replica nodes is modeled by a queuing system. We first
analyze the queueing behavior when an update is discarded,
then calculate the update discard probability and the expected
latency for a replica node to receive an update, finally, we
set ki to balance the availability and latency constrained by
consistency bounds.

A. Queueing Model

Assuming the total number of replica nodes asN , the node
degree asd, and there areL (L = O(logd N)) layers of
internal nodes with update buffer sizeki (i.e. layer0 . . . L−1
nodes with sliding windowki). The leaf nodes are in layer-L

and do not need buffer. The update arrivals are modeled by
a Poisson process with average arrival rateλi (simply asλ),
as each update is issued by a replica node independently and
identically at random. The latency of receiving an update from
the parent and acknowledged by the child is denoted as the
service time for update propagation. The service time for one
layer to its adjacent layer below is the longest parent-child
service time in these two layers.µl denotes the service time
for update propagation from layer-l to layer-l+1. For examples,
µ0 is the service time from the root to its slowest child,µL−1

is the longest service time from a layer-L−1 node to its child
(i.e. a leaf node). The update propagation delay is assumed to
be exponential distributed. The update propagations indDTi

are modeled as a queuing process shown in Fig.3 (a): The
updates arrive with average rateλ at the root, then go to the
layer-0 buffer with sizeki. The service time for propagating
from layer-0 to layer-1 is µ0. After that, the updates go to
layer-1 nodes’ buffer of sizeki with service time asµ1 for
propagating to layer-2 nodes. The propagations end when
updates are received by the leaves in the layer-L.

Fig. 3. Queuing Model of Update Propagation

An update may only be discarded by the root when its buffer
overflows. This happens when the root is waiting for RACK
from the slowest child in layer-1, who is waiting for RACK
from its slowest child in layer-2. The waiting cascades until
the bottleneck node of thedDTi is reached, say in the layer-l,
0 ≤ l ≤ L. The nodes in layersl + 1 . . . L (if l < L) do
not receive any update even when their buffers are not full.

All the nodes in the path from the root to the bottleneck node
have buffer overflow. The nodes along the path are denoted
by p0, p1 . . . pl, wherep0 is the root andpl is the bottleneck
node. After the bottleneck nodepl receives an update, it sends
an R ACK to its parent. The RACK is then propagated to
the rootp0, such that the root can purge the update from its
buffer and accept a new one. The update propagation from
p0 → p1, p1 → p2, . . . pl−1 → pl is in parallel and the service
timeµl−1 betweenpl andpl−1 should be the longest along this
path (i.e.µl−1 > µj , 0 ≤ j < l − 1). Therefore, the queuing
model of update discarding is transformed to a queue with the
effective buffer sizel ∗ ki for the dDTi, and the service time
is µ(l − 1), as shown in Fig.3 (b).

This queuing model of the update discard explains that given
a ki, the effective buffer sizel∗ki is determined byl, which is
the layer the bottleneck node resides. The larger the effective
buffer size, the lower the discard probability. So when the
bottleneck node is a leaf (l = L), buffer resources ofdDTi is
maximal used with effective buffer sizeL ∗ ki. This inspires
the Tree Node Migration techniques presented in Sec.II-D,
which help to move down the bottleneck node to the leaf layer
to boost the overall performance of thedDTi. The discard
probability of an update is computed based on the queuing
model ofdDTi after optimized by tree node migrations as in
Fig.3 (c). The queue becomes aM/M/1/ queue with buffer
sizeL ∗ ki, arrival rateλ and service timeµL−1.

B. Availability and Latency Computation

Define the update request intensity asρ.

ρ =
λ

µL−1

(1)

Define the probability ofn updates in the queue asπn. Based
on the queueing theory forM/M/1 finite queue [6],πn is
represented as Eq.2.

πn = ρnπ0 (2)

The discard probability isπL∗ki
, which indicates the buffer

overflow. FromΣL∗ki

n=0 πn = 1, we getπ0 = 1−ρ

1−ρL∗ki
. And the

discard probability is computed in Eq.3.

πL∗ki
=

1 − ρ

1 − ρL∗ki

ρL∗ki (3)

The expected number of packets in the queueE[NL∗ki
] is

calculated in Eq.4.

E[NL∗ki
] =

X

0≤n≤L∗ki

n ∗ πn (4)

Plug in the Eq.2 forπn, the final form ofE[NL∗ki
] is given

in Eq.5.

E[NL∗ki
] =

(L ∗ ki + 1)ρL∗ki+1

(ρL∗ki+1 − 1)
+

ρ

(1 − ρ)
(5)

The expected delayE[TL∗ki
] is calculated by Little’s law

in Eq.6, whereE[NL∗ki
] is the expected number of packets in

the queue andλ(1− πL∗ki
) is the arrival rate of the accepted

updates.

E[TL∗ki
] =

E[NL∗ki
]

λ(1 − πL∗ki
)

(6)

C. Window Size Setting

The effectiveness of a consistency protocol is measured by
three attributes: consistency strictness, object availability and
latency for receiving an update, and the three are in subtle
tension towards each other. Given the update arrival rate and
the service time, increasing the window sizeki lowers the
discard probability, while prolongs the expected latency and
weakens the consistency strictness. It is hard to accurately
model the delay for an update to be received by each replica
node, since besides the queueing delay at each node, the
dynamic node joining and leaving cause disturbance on the
update propagation process. The expected latencyE[TL∗ki

]
indicates the average delay for an update to arrive at a replica
node, which serves as a simple and approximate indicator. The
consistency strictness is measured by the number of updates
a replica node has not yet received, which is at mostL ∗ ki in
dDTi.

BCoM sets the window size to balance among the three
attributes by maximizing the object availability under the
constraints that the number of not-yet-received updates is
bounded toKm and latency for receiving the update is no
worse than the sequential consistency for a small boundTs in
Eq.7.E[TL∗k] is the expected latency with a window sizek
andE[TL] is the expected latency for sequential consistency
for this dDTi, which serves as the baseline for bounding
the latency performance. The latency thresholdTs and the
consistency strictness thresholdKm are set according to
application requirements. In our simulation, empiricallysetting
Ts to 1.3 achieves good results shown in Fig.6 and Fig.7, the
discard probability is improved from almost100% to 5% at
the cost of latency increases less than one third most of the
time. Km is set to60 based on the network size of1000.

ki = arg min πL∗k s.t.
E[TL∗k]

E[TL]
≤ Ts, L ∗ k ≤ Km (7)

IV. PERFORMANCEEVALUATION

In this section, we evaluate the efficiency of BCoM with
comparison to SCOPE [24], which is a seminal work of consis-
tency maintenance in structured P2P networks. We extend the
P2PSim tool [1] to simulate the heterogeneous node capacities
and transmission latency. While BCoM can be applied to every
type of structured P2P system, we choose Tapestry [7] as a
representative network for simulations.

A. Simulation Setting

We simulate a network of1000 nodes because anything
larger cannot be executed stably in P2PSim. The number of
objects ranges from102 to 104. The object popularity follows
a Zipf’s distribution, and the update arrivals are generated
by a Poisson process with different average arrival rates. By
default each node issues200 updates during a simulation
cycle, which is7.2 ∗ 106 time slots. This setup is aimed at
simulating the situation where frequent updates may overload
the servers, which motivates the use of P2P systems. Given that
transmitting one update uses only10 to 100 slots, the number
of time slots covered in a simulation cycle (i.e.7.2 ∗ 106) is

large enough to generate sustainable results. The data points
in our figures are the average values of20 trials.

The heterogeneity of node capacities follows a Pareto dis-
tribution [29]. We set the shape parametera = 1 and scale pa-
rameterb = 900 to get900 different node capacities. Network
topology is simulated by two transit-stub topologies generated
by GT ITM [9] to model dense and sparse networks: (1) ts1k-
small (dense) -2 transit domains each with4 transit nodes,4
stub domains attached to each transit node, and31 nodes in
each stub domain. (2) ts1k-large (sparse) -30 transit domains
each with4 transit nodes,4 stub domains attached to each
transit node, and2 nodes in each stub domain.

The node degree is set to5, since the average Gnutella node
degree is3 to 5. To have a fair comparison, we also set the
vector degree of each SCOPE node to5. The update discard
rate (the ratio of the number of discarded updates to the total
number of arriving updates), andupdate dissemination latency
(the average delay for each node to receive the update) are used
to measure the protocol efficiency.

B. Efficiency of the Window Size

This simulation explores the efficiency of applying sliding
window protocol. The curves in Fig.4 and Fig.5 show that
by increasing the window size from1 to 20, the discard
rate is dropped from80% to around5% and the latency is
increased only by20%, which confirms that BCoM signifi-
cantly improves the availability with slight sacrifice of latency
performance compared to the sequential consistency.

C. Scalability of BCoM

This simulation verifies the scalability of BCoM with com-
parison to SCOPE by varying the number of replica nodes and
the update rate of each object. The results in Fig.6 and Fig.8
show that the discard rate of BCoM is maintained to less than
10% as the number of replicas per object increases from10 to
1000 and the number of updates issued per node is increased
from 1 to 200. On the other hand, applying applying the se-
quential consistency makes the discard rate of SCOPE almost
100%, except with a very small number of replica nodes (i.e.
10 nodes per object) or with an extremely low update rate
(i.e. 1 node per object). The sliding window protocol and the
adaptive window size setting contribute to good availability
maintenance under dynamic system conditions.

As shown in Fig.7 the latency of BCoM is slightly higher
than that in SCOPE when the number of replica nodes is
large. This is due to the accumulated queuing delay at each
internal node introduced by sliding window. But the increase
is controlled within1/3rd of the latency of SCOPE, which
matches with the latency increase bound in window size setting
for improved discard rate. The results of Fig.9 show that the
latency of BCoM is similar to that of SCOPE when update
rates are low, and longer than SCOPE when update rates
are high. The reason is that under frequent updates, a new
join or re-join node needs to have larger content transfer to
get the latest version, which prolongs the average latency in
BCoM. However, we do not apply this requirement in SCOPE

to upgrade its discard rate to be comparable with that of
BCoM. As a result, their latency results are also tuned better.
In summary, BCoM achieves much higher availability than
SCOPE at the cost of controlled latency increase for bounded
consistency in large scale P2P systems with frequent updates.
Such good balance confirms the objectives in the analytical
model of the window size setting.

D. The Overhead of BCoM

This simulation compares the overhead of BCoM with that
of SCOPE as shown in Fig.10. The consistency maintenance
overhead of each object consists of three parts: subscribe
overhead, update overhead, and crash/migrate overhead, which
account for subscribing, updating the object and recovering
from crashes, respectively. We use the label ”migrate” to
indicate the migration and crash recovery overhead in BCoM.
BCoM keeps the overhead at the same level as that in SCOPE.
The reason is that the ancestor cache maintenance and the
node migration mostly piggyback on update disseminations
for sliding window optimization to reduce overhead.

E. Fault Tolerance of BCoM

This simulation examines BCoM’s robustness against node
failures by varying the node mean life time. Life time is the
ratio of the average number of slots a node stays online at one
time to the total number of slots in a simulation cycle. The
smaller the life time is, the more frequently the nodes join
and leave. The results of SCOPE are not presented because
their discard rate is nearly100% when the nodes are joining
or leaving. The results of Fig.11, Fig.12, and Fig.13 show that
BCoM keeps the tree depth, the discard rate and the latency
in good status for different frequencies of node joining and
leaving. The ancestor cache helps maintain the tree structure
under node churns. And adaptive window size setting keeps
the availability and latency performance stable.

V. RELATED WORK

A. Consistency Maintenance in P2P systems

In structured P2P systems, strong consistency is provided
by organizing replica nodes to an auxiliary structure on top
of the overlay for update propagation, like the tree structure
in SCOPE [24], two-tired structure in OceanStore [16], and
a hybrid of tree and two-tired structure in [29]. The tree
constructions in [24] [29] follow the node ID partitioning,
instead,dDT inserts the new node to the smallest subtree
to make it balanced under dynamic node joining and leaving.
dDT achieves the same load balance and failure robustness
as them with greatly enhanced availability for consistency
maintenance.

In unstructured P2P systems, mainly two types of bounded
consistency are provided: 1) probabilistic bounded consis-
tency: rumor spreading [4] and replica chain [30] are used
to ensure a certain probability of an update being received;
2) time-bounded consistency: TTL guided push and/or pull
methods are used in [25] [26] to indicate the valid period
for a replica copy, when the period expires the replica node

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

D
is

c
a
rd

 r
a
te

Window size

dense
sparse

Fig. 4. The impact of window size on discard
rate

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 2 4 6 8 10 12 14 16 18 20

L
a
te

n
c
y

Window size

dense
sparse

Fig. 5. The impact of window size on latency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

D
is

c
a
rd

 r
a
te

Number of replicas

BCoM-dense
BCoM-sparse

SCOPE-dense
SCOPE-sparse

Fig. 6. The impact of replica number on
discard rate

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 100 200 300 400 500 600 700 800 900 1000

L
a
te

n
c
y

Number of replicas

BCoM-dense
BCoM-sparse

SCOPE-dense
SCOPE-sparse

Fig. 7. The impact of replica number on
latency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200

D
is

c
a
rd

 r
a
te

Updates issued by each node per simulation cycle

BCoM-dense
BCoM-sparse

SCOPE-dense
SCOPE-sparse

Fig. 8. The impact of update pattern on discard
rate

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 20 40 60 80 100 120 140 160 180 200

L
a
te

n
c
y

Updates issued by each node per simulation cycle

BCoM-dense
BCoM-sparse

SCOPE-dense
SCOPE-sparse

Fig. 9. The impact of update pattern on latency

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

50 100
200

300
400

500
600

700
800

900
1000

O
v

e
rh

e
a

d

Number of replicas

BCoM overhead in sparse network

Update
Subscribe

Migrate

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

50 100
200

300
400

500
600

700
800

900
1000

O
v

e
rh

e
a

d

Number of replicas

SCOPE Overhead in sparse network

Update
Subscribe

Crash

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

50 100
200

300
400

500
600

700
800

900
1000

O
v

e
rh

e
a

d

Number of replicas

BCoM Overhead in dense network

Update
Subscribe

Migrate

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

50 100
200

300
400

500
600

700
800

900
1000

O
v

e
rh

e
a

d

Number of replicas

SCOPE Overhead in dense network

Update
Subscribe

Crash

(a) (b) (c) (d)

Fig. 10. Overhead comparison between BCoM and SCOPE

 0

 1

 2

 3

 4

 5

 6

 7

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
re

e
 h

e
ig

h
t

Life mean

dense
sparse

Fig. 11. The impact of churn rate on tree height

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

D
is

c
a
rd

 r
a
te

Life mean

dense
sparse

Fig. 12. The impact of churn rate on discard
rate

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

L
a
te

n
c
y

Life mean

dense
sparse

Fig. 13. The impact of churn rate on latency

needs to check validity with the source to serve the following
read requests. Node-level consistency is not ensured by prob-
abilistic bounded consistency, and the ambiguity introduced
by translating the valid time duration to the number of incon-
sistency updates in time-bounded consistency, are avoidedby
our sliding window update protocol.

B. Overlay Content Distribution

Update delivery in P2P overlay has four requirements: (1) a
bounded delay for update delivery, (2) robustness to frequent
node churns and update workload changes, (3) awareness of

heterogeneous peer capacities, and (4) scalability with a large
number of peers. The LagOver [3] constructed an update
delivery tree by jointly considering each user’s capacity and
latency requirements to address (1) and (3), both of which
are also handled by tree node migration in BCoM. The
major difference is that LagOver improves the performance
to meet the individual replica node’s requirement, while node
migration improves performance system-wide. And LagOver
requires information on each user’s latency requirement and
capacity, which are infeasible to be implemented in P2P
systems. But node migration exploits local information andis

performed on demand to support (2) without asking a replica
node to specify requirements in advance.

The “side link” is used in content dissemination tree in [11]
to address (2), where each node keeps multiple side links from
other subtrees to minimize the impact of loss multiplication
in a tree structure. The two end nodes of a side link do not
share any ancestor except the root. Our ancestor cache achieves
the same goal by only caching ancestors and contacting
the ancestor one layer above the failed nodes. The ancestor
cache in BCoM has extra benefit by avoiding communication
overhead to maintain end nodes on the other subtree. All
the ancestors’ information can be piggyback on the update
propagation. Besides, in BCoM a node sequentially contacts
the cached ancestors to avoid conflict relocation decisions
while in [11] a node uses multiple side links in parallel to
retrieve the lost packets, serving different aims.

C. Tunable Consistency Models

Previous works have explored continuous models for consis-
tency maintenance [17] [27], which have been extended by a
composable consistency model [23] for P2P applications. Hy-
brid push and pull methods are also used to provide application
tailored cache consistency [32] [25]. An analytical model for
adaptive update window protocol is provided in [31], where
the window specifies the number of uncommitted updates in
each replica node’s buffer and the information of each node’s
update rate and propagation latency are required to optimize
the window size. While in BCoM updates are serialized to
eliminate the update conflicts and potential cascading effects.
The window specifies the number of committed updates each
replica node can buffer, no information on each node is
required for the window size setting in BCoM.

VI. CONCLUSION

This paper presents a balanced consistency maintenance
(BCoM) framework for improving availability, performance
and consistency strictness in structured P2P systems. A sliding
window update protocol is applied with two enhancement
schemes, and the window size setting is analyzed through
a queueing model. This gives a good response to observa-
tions on dynamic network conditions, update workload and
peers’ resource limits, such that various application consis-
tency requirements are smoothly served. The simulation results
from P2PSim demonstrate that BCoM outperforms SCOPE
by greatly improving discard rate from almost100% to 5%
with a small sacrifice of latency under bounded consistency
constraint.

REFERENCES

[1] P2PSim. http://pdos.csail.mit.edu/p2psim/.
[2] A. B HARAMBE , J. R. DOUCEUR, J. R. L. T. M. J. P. S. S.,AND

ZHUANG, X. Donnybrook: Enabling large-scale, high-speed, peer-to-
peer games. InACM SIGCOMM(2008).

[3] A. DATTA , I. S., AND FRANKLIN , M. Lagover: latency gradated
overlays. InIEEE ICDCS(2007).

[4] A. DATTA , M. H., AND ABERER, K. Updates in highly unreliable,
replicated peer-to-peer systems. InIEEE ICDCS(2003).

[5] A GARWAL , S.,AND LORCH, J. R. Matchmaking for online games and
other latency-sensitive p2p systems. InACM SIGCOMM(2009).

[6] BERTSEKAS, D. P.,AND GALLAGER , R. G.Data Networks. Englewood
Cliffs, NJ: Prentice-Hall, 1986.

[7] B.Y. ZHAO, L. HUANG, J. S. S. R. A. J.,AND KUBIATOWICZ , J.
Tapestry: a resilient global-scale overlay for service deployement.IEEE
J-SAC 22, 1 (2004), 41–53.

[8] D. B. TERRY, M. M. THEIMER, K. P. A. J. D. M. J. S.,AND HAUSER,
C. H. Managing update conflicts in bayou, a weakly connected
replicated storage system. InACM SOSP(1995).

[9] E.W. ZEGURA, K. C., AND BHATTACHARJEE, S. How to model an
internetwork. InIEEE INFOCOM (1996).

[10] F. DABEK , M. F. KAASHOEK, D. K. R. M.,AND STOICA, I. Wide area
cooperative storage with cfs. InUSENIX Security Symp.(2000).

[11] F. WANG, J. L., AND X IONG, Y. Stable peers: existence, importance,
and application in peer-to-peer live video streaming. InACM MobiCom
(2004).

[12] G. OSTER, P. URSO, P. M., AND IMINE , A. Data consistency for p2p
collaborative editing. InCSCW(2006).

[13] G. URDANETA, G. P.,AND STEEN, M. V. A decentralized wiki engine
for collaborative wikipedia hosting. InWEBIST(2007).

[14] GILBERT, S.,AND LYNCH, N. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. In ACM PODC
(2002).

[15] HERLIHY, M. P., AND WING, J. M. Linearlizability: A correctness
condition for concurrent objects.ACM Trans Programm. Lang. Syst.
12, 3 (1990), 463–492.

[16] J. KUBIATOWICZ , D. BINDEL , Y. C. S. C. P. E.,AND GEELS, D.
Oceanstore: an architecture for global-scale persistent storage. InACM
ASPLOS-IX(2000).

[17] KRISHNAKUMAR , N., AND BERNSTEIN, A. Bounded ignorance: A
technique for increasing concurrency in a replicated system. ACM TODC
19, 4 (1994).

[18] M. CASTRO, P. DRUSCHEL, A. K., AND ROWSTRON, A. Scribe: A
large scale and decentralized application level multicastinfrastructure.
IEEE J-SAC 20, 8 (2002), 1489–1499.

[19] M. WALDMAN , A. D. R., AND CRANOR, L. F. Publius: A ro-
bust, tamper-evident, censorship-resistant web-publishing systems. In
USENIX Security Symp.(2000).

[20] RAMASUBRAMANIAN , V., AND SIRER, E. G. Beehive: exploiting
power law query distribution for o(1) lookup performance inpeer-to-
peer overlays. InNSDI (2004).

[21] ROWSTRON, A., AND DRUSCHEL, P. Storage management and caching
in past, a large-scale, persistent peer-to-peer storage utility. In ACM
SOSP(2001).

[22] S. IYER, A. R., AND DRUSCHEL, P. Squirrel: a decentralized peer-to-
peer web cache. InACM PODC(2002).

[23] SUSARLA, S.,AND CARTER, J. Flexible consistency for wide area peer
replication. InIEEE ICDCS(2005).

[24] X. CHEN, S. REN, H. W.,AND ZHANG, X. Scope: scalable consistency
maintenance in structured p2p systems. InIEEE INFOCOM (2005).

[25] X. L IU , J. LAN , P. S.,AND RAMARITHAM , K. Consistency mainte-
nance in dynamic peer-to-peer overlay networks.Computer Networks
50, 6 (2006), 859–876.

[26] X. TANG, J. X.,AND LEE, W. C. Analysis of ttl-based consistency in
unstructured peer-to-peer networks.IEEE TPDS 19, 12 (2008), 1683–
1694.

[27] YU, H., AND VAHDAT, A. Design and evaluation of a continuous
consistency model for replicated services. InOSDI (2000).

[28] YU, H., AND VAHDAT, A. The costs and limits of availability for
replicated services.ACM TOCS 24, 1 (2006), 70–113.

[29] Z. L I , G. X.,AND L I , Z. Efficient and scalable consistency maintenance
for heterogeneous peer-to-peer systems.IEEE TPDS 19, 12 (2008),
1695–1708.

[30] Z. WANG, S. K. DAS, M. K., AND SHEN, H. An efficient update
propagation algorithm for p2p systems.Computer Communications 30,
5 (2007), 1106–1115.

[31] ZHANG, C., AND ZHANG, Z. Trading replication consistency for
performance and availability: an adaptive approach. InIEEE ICDCS
(2003).

[32] ZHAO, M., AND FIGUEIREDO, R. J. Application-tailored cache consis-
tency for wide-area file systems. InIEEE ICDCS(2006).

